НОВОСТИ   БИБЛИОТЕКА   ЭКЗАМЕН ПО АНАТОМИИ   ЭКЗАМЕН ПО ПАТОЛОГИИ   О САЙТЕ  







предыдущая главасодержаниеследующая глава

Кровеносные сосуды

Типы кровеносных сосудов, особенности их строения. По современным представлениям, в сосудистой системе различают несколько видов сосудов: магистральные, резистивные, истинные капилляры, емкостные и шунтирующие.

Магистральные сосуды - это наиболее крупные артерии, в которых ритмически пульсирующий, изменчивый кровоток превращается в более равномерный и плавный. Стенки этих сосудов содержат мало гладкомышечных элементов и много эластических волокон. Магистральные сосуды оказывают небольшое сопротивление кровотоку.

Резистивные сосуды (сосуды сопротивления) включают в себя прекапиллярные (мелкие артерии, артериолы, прекапиллярные сфинктеры) и посткапиллярные (венулы и мелкие вены) сосуды сопротивления. Соотношение между тонусом пре- и посткапиллярных сосудов определяет уровень гидростатического давления в капиллярах, величину фильтрационного давления и интенсивность обмена жидкости.

Истинные капилляры (обменные сосуды) - важнейший отдел сердечно-сосудистой системы. Через тонкие стенки капилляров происходит обмен между кровью и тканями (транскапиллярный обмен). Стенки капилляров не содержат гладкомышечных элементов.

Емкостные сосуды - венозный отдел сердечнососудистой системы. Емкостными эти сосуды называют потому, что они вмещают примерно 70-80% всей крови.

Шунтирующие сосуды - артериовенозные анастомозы, обеспечивающие прямую связь между мелкими артериями и венами в обход капиллярного ложа.

Закономерности движения крови по сосудам, значение эластичности сосудистой стенки. В соответствии с законами гидродинамики движение крови определяется двумя силами: разностью давлений в начале и конце сосуда (способствует продвижению жидкости по сосуду) и гидравлическим сопротивлением, которое препятствует току жидкости. Отношение разности давлений к сопротивлению определяет объемную скорость тока жидкости. Объемная скорость тока жидкости - объем жидкости, протекающей по трубам в единицу времени, выражается простым уравнением:


где Q - объем жидкости; Р12 - разность давлений в начале и конце сосуда, по которому течет жидкость; R - сопротивление потоку. Эта зависимость носит название основного гидродинамического закона, который формулируется так: количество крови, протекающей в единицу времени через кровеносную систему, тем больше, чем больше разность давлений в ее артериальном и венозном концах и чем меньше сопротивление току крови. Основной гидродинамический закон определяет и кровообращение в целом, и течение крови через сосуды отдельных органов. Количество крови, проходящей за 1 мин через сосуды большого круга кровообращения, зависит от разности кровяного давления в аорте и полых венах и от общего сопротивления кровотоку. Количество крови, протекающей через сосуды малого круга кровообращения, определяется разностью кровяного давления в легочном стволе и венах и сопротивлением кровотоку в сосудах легких. Наконец, количество крови, проходящей через отдельный орган, например мышцу, мозг, почки и т. д., зависит от разности давлений в артериях и венах этого органа и сопротивления течению крови в его сосудистой сети.

Сердце во время систолы выбрасывает в соответствующие сосуды определенные порции крови. Однако кровь по кровеносным сосудам течет не прерывистой, а беспрерывной струей. Что же обеспечивает движение крови во время диастолы желудочков? Кровь движется по сосудам во время расслабления желудочков за счет потенциальной энергии сердечной мышцы, накопленной в стенках кровеносных сосудов. Систолический объем крови растягивает эластические и мышечные элементы стенки главным образом магистральных сосудов. В стенках магистральных сосудов накапливается запас энергии сердца, затраченной на их растяжение. Во время диастолы эластичная стенка артерий спадается и накопленная в ней потенциальная энергия сердца движет кровь. Растяжение крупных артерий облегчается благодаря большому сопротивлению, которое оказывают резистивные сосуды, поэтому кровь, выбрасываемая сердцем во время систолы, не успевает перейти в мелкие кровеносные сосуды. В результате этого создается временный избыток крови в крупных артериальных сосудах.

Таким образом, сердце обеспечивает движение крови в артериях и во время систолы, и во время диастолы.

Значение эластичности сосудистых стенок состоит в том, что они обеспечивают переход прерывистого, пульсирующего (в результате сокращения желудочков) тока крови в постоянный. Это важное свойство сосудистой стенки обусловливает сглаживание резких колебаний давления, что способствует бесперебойному кровоснабжению органов и тканей.

Давление крови в различных отделах сосудистого русла

Давление крови в различных отделах сосудистого русла неодинаково: в артериальной системе оно выше, в венозной ниже. Это отчетливо видно из данных, представленных в табл. 3 и на рис. 16.

Таблица 3. Величина среднединамического давления в различных участках кровеносной системы человека
Таблица 3. Величина среднединамического давления в различных участках кровеносной системы человека

Рис. 16. Диаграмма изменения давления в разных частях сосудистой системы. А - систолического; Б - диастолического; В - среднего; 1 - аорта; 2 - крупные артерии; 3 - мелкие артерии; 4 - артериолы; 5 - капилляры; 6 - венулы; 7 - вены; 8 - полые вены
Рис. 16. Диаграмма изменения давления в разных частях сосудистой системы. А - систолического; Б - диастолического; В - среднего; 1 - аорта; 2 - крупные артерии; 3 - мелкие артерии; 4 - артериолы; 5 - капилляры; 6 - венулы; 7 - вены; 8 - полые вены

Кровяное давление - давление крови на стенки кровеносных сосудов - измеряется в паскалях (1 Па = 1 Н/м2). Нормальное кровяное давление необходимо для циркуляции крови и надлежащего снабжения кровью органов и тканей, для образования тканевой жидкости в капиллярах, а также для осуществления процессов секреции и экскреции.

Величина кровяного давления зависит от трех основных факторов: частоты и силы сердечных сокращений; величины периферического сопротивления, т. е. тонуса стенок сосудов, главным образом артериол и капилляров; объема циркулирующей крови.

Различают артериальное, венозное и капиллярное давление крови. Величина артериального давления у здорового человека является довольно постоянной. Однако она всегда подвергается небольшим колебаниям в зависимости от фаз деятельности сердца и дыхания.

Различают систолическое, диастолическое, пульсовое и среднее артериальное давление.

Систолическое (максимальное) давление отражает состояние миокарда левого желудочка сердца. Его величина 13,3-16,0 кПа (100-120 мм рт. ст.).

Диастолическое (минимальное) давление характеризует степень тонуса артериальных стенок. Оно равняется 7,8-10,7 кПа (60-80 мм рт. ст.).

Пульсовое давление - это разность между систолическим и диастолическим давлением. Пульсовое давление необходимо для открытия полулунных клапанов во время систолы желудочков. В норме пульсовое давление составляет 4,7-7,3 кПа (35-55 мм рт. ст.). Если систолическое давление станет равным диастолическому, движение крови будет невозможным и наступит смерть.

Среднее артериальное давление равняется сумме диастолического и 1/3 пульсового давления. Среднее артериальное давление выражает энергию непрерывного движения крови и представляет собой постоянную величину для данного сосуда и организма.

На величину артериального давления оказывают влияние различные факторы: возраст, время суток, состояние организма, центральной нервной системы и т. д. У новорожденных величина максимального артериального давления составляет 5,3 кПа (40 мм рт. ст.), в возрасте 1 мес - 10,7 кПа (80 мм рт. ст.), 10-14 лет - 13,3-14,7 кПа (100-110 мм рт. ст.), 20-40 лет - 14,7-17,3 кПа (110-130 мм рт. ст.). С возрастом максимальное давление увеличивается в большей степени, чем минимальное.

В течение суток наблюдается колебание величины артериального давления: днем оно выше, чем ночью.

Значительное повышение максимального артериального давления может наблюдаться при тяжелой физической нагрузке, во время спортивных состязаний и др. После прекращения работы или окончания соревнований артериальное давление быстро возвращается к исходным показателям. Повышение артериального давления называют гипертонией. Понижение артериального давления получило название гипотонии. Гипотония может наступить в результате отравления наркотиками, при сильных травмах, обширных ожогах, больших кровопотерях.

Стойкие гипертония и гипотония могут обусловить нарушение функций органов, физиологических систем и организма в целом. В этих случаях необходима квалифицированная врачебная помощь.

У животных артериальное давление измеряют бескровным и кровавым способом. В последнем случае обнажают одну из крупных артерий (сонная или бедренная). Делают надрез в стенке артерии, через который вводят стеклянную канюлю (трубочку). Канюлю при помощи лигатур укрепляют в сосуде и соединяют с одним концом ртутного манометра с помощью системы резиновых и стеклянных трубок, заполненных раствором, препятствующим свертыванию крови. На другом конце манометра опускают поплавок с писчиком. Колебания давления передаются через жидкость трубочек ртутному манометру и поплавку, движения которого регистрируются на закопченной поверхности барабана кимографа.

У человека артериальное давление определяют аускультативным методом по Короткову (рис. 17). Для этой цели необходимо иметь сфигмоманометр Рива-Роччи или сфигмотонометр (манометр мембранного типа). Сфигмоманометр состоит из ртутного манометра, широкого плоского резинового мешка-манжеты и нагнетательной резиновой груши, соединенных друг с другом резиновыми трубками. Артериальное давление у человека обычно измеряют в плечевой артерии. Резиновую манжету, нерастяжимую благодаря покрышке из парусины, обертывают вокруг плеча и застегивают. Затем с помощью груши в манжету нагнетают воздух. Манжета раздувается и сдавливает ткани плеча и плечевую артерию. Степень этого давления можно измерить по манометру. Воздух нагнетают до тех пор, пока не перестанет прощупываться пульс в плечевой артерии, что происходив при полном ее сжатии. Затем в области локтевого сгиба, т. е. ниже места пережатия, к плечевой артерии прикладывают фонендоскоп и начинают с помощью винта понемногу выпускать воздух из манжеты. Когда давление в манжете понизится настолько, что кровь при систоле оказывается способной его преодолеть, в плечевой артерии прослушиваются характерные звуки - тоны. Эти тоны обусловлены появлением тока крови при систоле и отсутствием его при диастоле. Показания манометра, которые соответствуют появлению тонов, характеризуют максимальное, или систолическое, давление в плечевой артерии. При дальнейшем понижении давления в манжете тоны сначала усиливаются, а затем затихают и перестают прослушиваться. Прекращение звуковых явлений свидетельствует о том, что теперь и во время диастолы кровь способна проходить по сосуду. Прерывистое течение крови превращается в непрерывное. Движение по сосудам в этом случае не сопровождается звуковыми явлениями. Показания манометра, которые соответствуют моменту исчезновения тонов, характеризуют диастолическое, минимальное, давление в плечевой артерии.

Рис. 17. Определение артериального давления у человека
Рис. 17. Определение артериального давления у человека

Артериальный пульс - это периодические расширения и удлинения стенок артерий, обусловленные поступлением крови в аорту при систоле левого желудочка. Пульс характеризуется рядом качеств, которые определяются путем пальпации чаще всего лучевой артерии в нижней трети предплечья, где она расположена наиболее поверхностно.

Пальпаторно определяют следующие качества пульса: частоту - количество ударов в 1 мин, ритмичность - правильное чередование пульсовых ударов, наполнение - степень изменения объема артерии, устанавливаемая по силе пульсового удара, напряжение - характеризуется силой, которую надо приложить, чтобы сдавить артерию до полного исчезновения пульса.

Пальпацией определяют и состояние стенок артерий: после сдавления артерии до исчезновения пульса в случае склеротических изменений сосуда она ощущается как плотный тяж.

Возникшая пульсовая волна распространяется по артериям. По мере продвижения она ослабевает и затухает на уровне капилляров. Скорость распространения пульсовой волны в различных сосудах у одного и того же человека неодинакова, она больше в сосудах мышечного типа и меньше в эластических сосудах. Так, у людей молодого и пожилого возраста скорость распространения пульсовых колебаний в эластических сосудах лежит в пределах от 4,8 до 5,6 м/с, в крупных артериях мышечного типа - от 6,0 до 7,0-7,5 м/с. Таким образом, скорость распространения пульсовой волны по артериям значительно больше, чем скорость движения крови по ним, которая не превышает 0,5 м/с. С возрастом, когда понижается эластичность сосудов, скорость распространения пульсовой волны увеличивается.

Для более детального изучения пульса производят его запись с помощью сфигмографа. Кривая, полученная при записи пульсовых колебаний, называется сфигмограммой (рис. 18).

Рис. 18. Сфигмограммы артерий, записанные синхронно. 1 - сонная артерия; 2 - лучевая; 3 - пальцевая
Рис. 18. Сфигмограммы артерий, записанные синхронно. 1 - сонная артерия; 2 - лучевая; 3 - пальцевая

На сфигмограмме аорты и крупных артерий различают восходящее колено - анакроту и нисходящее колено - катакроту. Возникновение анакроты объясняется поступлением новой порции крови в аорту в начале систолы левого желудочка. В результате расширяется стенка сосуда, при этом возникает пульсовая волна, которая распространяется по сосудам, и на сфигмограмме фиксируется подъем кривой. В конце систолы желудочка, когда давление в нем снижается, а стенки сосудов возвращаются в исходное состояние, на сфигмограмме появляется катакрота. Во время диастолы желудочков давление в их полости становится ниже, чем в артериальной системе, поэтому создаются условия для возвращения крови в желудочки. В результате этого давление в артериях падает, что отражается на пульсовой кривой в виде глубокой выемки - инцизуры. Однако на своем пути кровь встречает препятствие - полулунные клапаны. Кровь отталкивается от них и обусловливает появление вторичной волны повышения давления. Это в свою очередь вызывает вторичное расширение стенок артерий, что фиксируется на сфигмограмме в виде дикротического подъема.

Физиология микроциркуляции

В сердечно-сосудистой системе центральным является микроциркуляторное звено. Все другие отделы системы кровообращения обеспечивают основную функцию, выполняемую микроциркуляторным звеном, - транскапиллярный обмен.

Микроциркуляторное звено сердечно-сосудистой системы представлено мелкими артериями, артериолами, метартериолами, капиллярами, венулами, мелкими венами.

Согласно существующим представлениям, иннервируются микрососуды с хорошо выраженным слоем гладкомышечных клеток. Иннервация прогрессивно уменьшается с исчезновением мышечных клеток в стенке микрососуда.

Транскапиллярный обмен происходит в капиллярах. Он возможен благодаря особому строению капилляров, стенка которых обладает двусторонней проницаемостью. Проницаемость - это активный процесс, который обеспечивает оптимальную среду для нормальной жизнедеятельности клеток организма.

Рассмотрим особенности строения важнейших представителей микроциркуляторного русла - капилляров.

Капилляры открыты и изучены итальянским ученым Мальпиги (1861). Общее количество капилляров в системе сосудов большого круга кровообращения составляет около 2 млрд., протяженность их 8000 км, площадь внутренней поверхности 25 м2, объем крови приблизительно равен сердечному выбросу - 63·10-3-65·10-3 (63-65 мл). Поперечное сечение всего капиллярного русла в 500-600 раз больше поперечного сечения аорты.

Капилляры имеют форму шпильки, срезанной или полной восьмерки. В капилляре различают артериальное и венозное колено, а также вставочную часть. Длина капилляра равна 0,3·10-3-0,7·10-3 м (0,3-0,7 мм), диаметр - 8·10-6-10·10-6 м (0,008-0,01 мм). Через просвет такого сосуда эритроциты проходят друг за другом, несколько деформируясь. Скорость тока крови в капиллярах составляет 0,5·10-3-1·10-3 м/с (0,5-1 мм/с), что в 500-600 раз меньше скорости тока крови в аорте.

Стенка капилляров образована одним слоем эндотелиальных клеток, которые снаружи сосуда располагаются на тонкой соединительнотканной базальной мембране.

Существуют закрытые и открытые капилляры. Показано, что работающая мышца животного содержит в 30 раз больше капилляров, чем мышца, находящаяся в состоянии покоя.

Форма, размеры и количество капилляров в различных органах неодинаковы. В тканях органов, в которых наиболее интенсивно происходят обменные процессы, количество капилляров на 1·10-6 м2 (1 мм2) поперечного сечения значительно больше, чем в органах, где метаболизм менее выражен. Так, в сердечной мышце на 1·10-6 м2 (1 мм2) поперечного сечения приходится в 2 раза больше капилляров, чем в скелетной мышце.

Для выполнения капиллярами их функций (транскапиллярный обмен) имеет значение величина артериального давления. Установлено, что в артериальном колене капилляра давление крови составляет 4,3 кПа (32 мм рт. ст.), в венозном - 2,0 кПа (15 мм рт. ст.). В капиллярах почечных клубочков величина давления достигает 9,3-12,0 кПа (70-90 мм рт. ст.), в капиллярах, оплетающих почечные канальцы, - 1,9-2,4 кПа (14-18 мм рт. ст.). В капиллярах легких величина давления равняется 0,8 кПа (6 мм рт. ст.).

Таким образом, величина давления в капиллярах тесно связана с состоянием органа (покой, активность) и теми функциями, которые он выполняет.

Кровообращение в капиллярах можно наблюдать под микроскопом в плавательной перепонке лапки лягушки. В капиллярах кровь движется прерывисто, что связано с изменением просвета артериол и прекапиллярных сфинктеров. Фазы сокращения и расслабления длятся от нескольких секунд до нескольких минут. Активность микрососудов регулируется нервными и гуморальными механизмами. На артериолы главным образом воздействуют симпатические нервы, на прекапиллярные сфинктеры - гуморальные факторы (гистамин, серотонин и др.).

Особенности кровотока в венах. Кровь из микроциркуляторного русла (венулы, мелкие вены) поступает в венозную систему. В венах давление крови низкое. Если в начале артериального русла давление крови равно 18,7 кПа (140 мм рт. ст.), то в венулах оно составляет 1,3-2,0 кПа (10-15 мм рт. ст.). В конечной части венозного русла давление крови приближается к нулю и даже может быть ниже атмосферного давления.

Движению крови по венам способствует ряд факторов: работа сердца, клапанный аппарат вен, сокращение скелетных мышц, присасывающаяся функция грудной клетки.

Работа сердца создает разность давлений крови в артериальной системе и правом предсердии. Это обеспечивает венозный возврат крови к сердцу. Наличие в венах клапанов способствует движению крови в одном направлении - к сердцу. Чередование сокращений и расслаблений мышц является важным фактором, способствующим движению крови по венам. При сокращении мышц тонкие стенки вен сжимаются и кровь продвигается по направлению к сердцу. Расслабление скелетных мышц способствует поступлению крови из артериальной системы в вены. Такое нагнетающее действие мышц получило название мышечного насоса, который является помощником основного насоса - сердца. Вполне понятно, что движение крови по венам облегчается во время ходьбы, когда ритмически работает мышечный насос нижних конечностей.

Отрицательное внутригрудное давление, особенно в фазу вдоха, способствует венозному возврату крови к сердцу. Внутригрудное отрицательное давление вызывает расширение венозных сосудов, области шеи и грудной полости, обладающих тонкими и податливыми стенками. Давление в венах понижается, что облегчает движение крови по направлению к сердцу.

Скорость тока крови в периферических венах составляет 5-14·10-2 м/с (5-14 см/с). В полых венах скорость движения крови равна 20·10-2 м/с (20 см/с).

Емкостная функция вен очень велика. Уменьшение емкости системных вен на 2-3% увеличивает диастолический приток крови к сердцу в 2 раза.

Линейная скорость движения крови в венах меньше, чем в артериях. Это связано с тем, что просвет вен больше просвета артериального русла.

Время кругооборота крови

Временем кругооборота крови называют время, необходимое для прохождения крови по двум кругам кровообращения. Установлено, что у взрослого здорового человека при 70-80 сокращениях сердца в 1 мин полный кругооборот крови происходит за 20-23 с. Из этого времени 1/5 приходится на малый круг кровообращения и 4/5 - на большой.

Существует ряд методов, с помощью которых определяют время кругооборота крови. Принцип этих методов состоит в том, что в вену вводят какое-либо вещество, не встречающееся обычно в организме, и определяют, через какой промежуток времени оно появляется в одноименной вене другой стороны или вызывает характерное для него действие.

В настоящее время для определения времени кругооборота крови используют радиоактивный метод. В локтевую вену одной руки вводят радиоактивный изотоп, например 24Na, на другой же руке специальным счетчиком регистрируют появление его в крови.

Время кругооборота крови при нарушениях деятельности сердечно-сосудистой системы может существенно изменяться. У больных с тяжелыми заболеваниями сердца время кругооборота крови может увеличиваться до 1 мин.

Движение крови в различных отделах системы кровообращения характеризуется двумя показателями - объемной и линейной скоростью кровотока.

Объемная скорость кровотока одинакова в поперечном сечении любого участка сердечно-сосудистой системы. Объемная скорость в аорте равна количеству крови, выбрасываемой сердцем в единицу времени, т. е. минутному объему крови. Такое же количество крови поступает к сердцу по полым венам в 1 мин. Одинакова объемная скорость крови, притекающей и оттекающей от органа.

На объемную скорость кровотока оказывают влияние в первую очередь разность давлений в артериальной и венозной системах и сопротивление сосудов. Повышение артериального и снижение венозного давления обусловливает увеличение разности давлений в артериальной и венозной системах, что приводит к нарастанию скорости кровотока в сосудах. Снижение артериального и повышение венозного давления влечет за собой уменьшение разности давлений в артериальной и венозной системах. При этом наблюдается уменьшение объемной скорости кровотока в сосудах.

На величину сопротивления сосудов оказывает влияние ряд факторов: радиус сосудов, их длина, вязкость крови.

Линейная скорость кровотока - это путь, пройденный в единицу времени каждой частицей крови. Линейная скорость кровотока в отличие от объемной неодинакова в разных сосудистых областях. Линейная скорость кровотока наибольшая в артериях и наименьшая в капиллярах. Следовательно, линейная скорость кровотока обратно пропорциональна суммарной площади поперечного сечения сосудов.

В потоке крови скорость отдельных частиц различна. В крупных сосудах линейная скорость максимальна для частиц, движущихся по оси сосуда, минимальна для пристеночных слоев.

В состоянии относительного покоя организма линейная скорость кровотока в аорте составляет 0,5 м/с. В период двигательной активности организма она может достигать 2,5 м/с. По мере разветвления сосудов ток крови в каждой веточке замедляется. В капиллярах он равен 0,0005 м/с (0,5 мм/с), что в 1000 раз меньше, чем в аорте. Замедление кровотока в капиллярах облегчает обмен веществ между тканями и кровью. В крупных венах линейная скорость тока крови увеличивается, так как уменьшается площадь сосудистого сечения. Однако она никогда не достигает скорости тока крови в аорте. Величина кровотока в разных органах различна. Она зависит от васкуляризации органа и уровня его активности (табл. 4).

Таблица 4. Величина кровотока в разных органах на 0,1 кг их массы
Таблица 4. Величина кровотока в разных органах на 0,1 кг их массы

Иннервация кровеносных сосудов

Изучение вазомоторной иннервации было начато русским исследователем А. П. Вальтером, учеником Н. И. Пирогова, и французским физиологом Клодом Бернаром.

А. П. Вальтер (1842) изучал влияние раздражения и перерезки симпатических нервов на просвет кровеносных сосудов в плавательной перепонке лягушки. Наблюдая за просветом кровеносных сосудов под микроскопом, А. П. Вальтер установил, что симпатические нервы обладают способностью суживать сосуды.

Клод Бернар (1852) изучал влияние симпатических нервов на тонус сосудов уха кролика-альбиноса. Он обнаружил, что раздражение электрическим током симпатического нерва на шее у кролика закономерно сопровождается сужением сосудов: ухо животного становилось бледным и холодным. Перерезка симпатического нерва на шее приводила к расширению сосудов уха, которое становилось красным и теплым (рис. 19).

Рис. 19. Влияние перерезки симпатических нервов на тонус сосудов уха кролика. Сосуды правого уха (на стороне перерезки) расширены
Рис. 19. Влияние перерезки симпатических нервов на тонус сосудов уха кролика. Сосуды правого уха (на стороне перерезки) расширены

Современные данные также свидетельствуют о том, что симпатические нервы для сосудов являются вазоконстрикторами (суживают сосуды). Установлено, что даже в условиях полного покоя по вазоконстрикторным волокнам к сосудам непрерывно поступают нервные импульсы, которые поддерживают их тонус. Вследствие этого перерезка симпатических волокон сопровождается расширением сосудов.

Вазоконстрикторное влияние симпатических нервов не распространяется на сосуды головного мозга, легких, сердца и работающих мышц. При возбуждении симпатических нервов сосуды указанных органов и тканей расширяются.

Сосудорасширяющие нервы имеют несколько источников. Они входят в состав некоторых парасимпатических нервов. Сосудорасширяющие нервные волокна обнаружены в составе симпатических нервов и задних корешков спинного мозга.

Сосудорасширяющие волокна (вазодилататоры) парасимпатической природы. Впервые Клод Бернар установил наличие сосудорасширяющих нервных волокон в составе VII пары черепных нервов (лицевой нерв). При раздражении нервной веточки (барабанная струна) лицевого нерва он наблюдал расширение сосудов подчелюстной железы. В настоящее время известно, что и в составе других парасимпатических нервов имеются вазодилататорные нервные волокна. Например, сосудорасширяющие нервные волокна обнаружены в языкоглоточном (IX пара черепных нервов), блуждающем (X пара черепных нервов) и тазовом нервах.

Сосудорасширяющие волокна симпатической природы. Симпатические вазодилататорные волокна иннервируют сосуды скелетных мышц. Они обеспечивают высокий уровень кровотока в скелетной мускулатуре во время физической нагрузки и не участвуют в рефлекторной регуляции артериального давления.

Сосудорасширяющие волокна корешков спинного мозга. При раздражении периферических концов задних корешков спинного мозга, в состав которых входят чувствительные волокна, можно наблюдать расширение сосудов кожи.

Гуморальная регуляция тонуса сосудов

В регуляции тонуса сосудов участвуют также гуморальные вещества, которые могут воздействовать на сосудистую стенку как непосредственно, так и изменяя нервные влияния. Под действием гуморальных факторов просвет сосудов или увеличивается, или уменьшается, поэтому принято гуморальные факторы, оказывающие действие на тонус сосудов, делить на сосудосуживающие и сосудорасширяющие вещества.

Сосудосуживающие вещества. К этим гуморальным факторам относятся адреналин, норадреналин (гормоны мозгового вещества надпочечников), вазопрессин (гормон задней доли гипофиза), ангиотонин (гипертензин), образующийся из α2-глобулина плазмы под влиянием ренина (протеолитический фермент почек), серотонин - биологически активное вещество, носителями которого являются тучные клетки соединительной ткани и тромбоциты.

Указанные гуморальные факторы преимущественно суживают артерии и капилляры.

Сосудорасширяющие вещества. К ним относятся гистамин, ацетилхолин, тканевые гормоны - кинины, простагландины.

Гистамин - продукт белкового происхождения, образуется в тучных клетках, базофилах, в стенке желудка, кишечника и т. д. Гистамин является активным вазодилататором, он расширяет мельчайшие сосуды - артериолы и капилляры.

Ацетилхолин действует местно, расширяет мелкие артерии.

Главным представителем кининов является брадикинин. Он расширяет преимущественно мелкие артериальные сосуды и прекапиллярные сфинктеры, что способствует увеличению кровотока в органах.

Простагландины содержатся во всех органах и тканях человека. Некоторые из простагландинов дают выраженный сосудорасширяющий эффект, который проявляется местно.

Сосудорасширяющие свойства присущи и другим веществам, например молочной кислоте, ионам калия, магния и т. д.

Таким образом, просвет кровеносных сосудов, их тонус регулируется нервной системой и гуморальными факторами, к которым относится большая группа биологически активных веществ с выраженным вазоконстрикторным или вазодилататорным действием.

Сосудодвигательный центр, его локализация и значение

Регуляция тонуса сосудов осуществляется с помощью сложного механизма, который включает в себя нервный и гуморальный компоненты.

В нервной регуляции тонуса сосудов принимают участие спинной, продолговатый, средний и промежуточный мозг, кора головного мозга.

Спинной мозг. Русский исследователь В. Ф. Овсянников (1870-1871) одним из первых указал на роль спинного мозга в регуляции тонуса сосудов. После отделения у кроликов спинного мозга от продолговатого путем поперечной перерезки наблюдалось резкое падение величины артериального давления в результате понижения тонуса сосудов. В опытах В. Ф. Овсянникова и других исследователей у "спинальных" животных величина артериального давления не восстанавливалась в течение длительного времени (дни, недели). В дальнейшем отмечалась постепенная нормализация тонуса сосудов и соответственно повышалось артериальное давление, которое держалось на достаточно высоком уровне.

Нормализация артериального давления у "спинальных" животных осуществляется за счет нейронов, расположенных в боковых рогах грудных и поясничных сегментов спинного мозга и дающих начало симпатическим нервам, которые связаны с сосудами соответствующих участков тела. Эти нервные клетки выполняют функцию спинальных сосудодвигательных центров и принимают участие в регуляции тонуса сосудов.

Продолговатый мозг. В. Ф. Овсянников на основании результатов опытов с высокой поперечной перерезкой спинного мозга у животных пришел к заключению, что в продолговатом мозге локализуется сосудодвигательный центр. Этот центр регулирует деятельность спинальных сосудодвигательных центров, которые находятся в прямой зависимости от его активности.

Современные данные подтверждают факты, установленные В. Ф. Овсянниковым и другими учеными. Сосудодвигательный центр - это парное образование, которое располагается на дне ромбовидной ямки и занимает нижнюю и среднюю ее части.

При локальном раздражении отдельных участков продолговатого мозга игольчатыми электродами было показано, что сосудодвигательный центр состоит из двух отличных в функциональном отношении областей - прессорной и депрессорной. Возбуждение нейронов прессорной области сосудодвигательного центра приводит к повышению тонуса сосудов и уменьшению их просвета, возбуждение нейронов депрессорной зоны обусловливает понижение тонуса сосудов и увеличение их просвета.

В настоящее время установлено, что нейроны, вызывающие расширение сосудов, могут располагаться в прессорной области сосудодвигательного центра и наоборот. Показано также, что нейронов, обеспечивающих при своем возбуждении сосудосуживающие реакции в сосудодвигательном центре, больше, чем нейронов, обусловливающих при своей активности расширение сосудов. Наконец, обнаружено, что нейроны сосудодвигательного центра располагаются среди нервных структур ретикулярной формации продолговатого мозга.

Средний мозг и гипоталамическая область. Раздражение нейронов среднего мозга, по данным ранних работ В. Я. Данилевского (1875), сопровождается повышением тонуса сосудов, приводящим к возрастанию артериального давления.

Внимание исследователей в большей степени было направлено на изучение роли гипоталамической области промежуточного мозга в регуляции тонуса кровеносных сосудов.

Установлено, что раздражение передних отделов гипоталамической области приводит к понижению тонуса сосудов, увеличению их просвета и падению артериального давления. Стимуляция нейронов задних отделов гипоталамуса, наоборот, сопровождается повышением тонуса сосудов, уменьшением их просвета и увеличением артериального давления.

Влияние гипоталамической области на тонус сосудов осуществляется главным образом через сосудодвигательный центр продолговатого мозга. Однако часть нервных волокон от гипоталамической области идет непосредственно к спинальным нейронам, минуя сосудодвигательный центр продолговатого мозга.

Кора головного мозга. Роль этого отдела центральной нервной системы в регуляции тонуса сосудов была доказана в опытах с прямым раздражением различных зон коры головного мозга, в экспериментах с удалением (экстирпацией) отдельных ее участков и методом условных рефлексов.

Опыты с раздражением нейронов коры головного мозга и с удалением ее различных участков позволили сделать определенные выводы. Кора головного мозга обладает способностью как тормозить, так и усиливать активность нейронов подкорковых образований, имеющих отношение к регуляции тонуса сосудов, а также нервных клеток сосудодвигательного центра продолговатого мозга. Наибольшее значение в регуляции тонуса сосудов имеют передние отделы коры головного мозга: моторная, премоторная и орбитальная.

Условнорефлекторные влияния на тонус сосудов

Классическим приемом, который позволяет судить о кортикальных влияниях на функции организма, является метод условных рефлексов.

В лаборатории И. П. Павлова его учениками (И. С. Цитович) впервые были образованы условные сосудистые рефлексы у человека. В качестве безусловного раздражителя использовали температурный фактор (тепло и холод), болевое воздействие, фармакологические вещества, изменяющие тонус сосудов (адреналин). Условным сигналом являлись звук трубы, вспышка света и т. д.

Изменение тонуса сосудов регистрировали с помощью так называемого плетизмографического метода. Этот метод позволяет фиксировать колебания объема органа (например, верхней конечности), которые связаны со сдвигами в его кровенаполнении и, следовательно, обусловлены изменениями в просвете кровеносных сосудов.

В опытах было установлено, что условные сосудистые рефлексы у человека и животных образуются сравнительно быстро. Сосудосуживающий условный рефлекс может быть получен после 2-3 сочетаний условного сигнала с безусловным раздражителем, сосудорасширяющий - после 20-30 и более сочетаний. Условные рефлексы первого вида хорошо сохраняются, второго вида оказались нестойкими и непостоянными по величине.

Таким образом, по своему функциональному значению и механизму действия на тонус сосудов отдельные уровни центральной нервной системы неравнозначны.

Сосудодвигательный центр продолговатого мозга осуществляет регуляцию тонуса сосудов, воздействуя на спинальные сосудодвигательные центры. Кора головного мозга и гипоталамическая область оказывают опосредованное влияние на тонус сосудов, изменяя возбудимость нейронов продолговатого и спинного мозга.

Значение сосудодвигательного центра. Нейроны сосудодвигательного центра за счет своей активности осуществляют регуляцию тонуса сосудов, поддерживают нормальную величину кровяного давления, обеспечивают движение крови по сосудистой системе и ее перераспределение в организме по отдельным областям - органам и тканям, влияют на процессы терморегуляции, изменяя просвет сосудов.

Тонус сосудодвигательного центра продолговатого мозга. Нейроны сосудодвигательного центра находятся в состоянии постоянного тонического возбуждения, которое передается на нейроны боковых рогов спинного мозга симпатической нервной системы. Отсюда возбуждение по симпатическим нервам поступает к сосудам и обусловливает их постоянное тоническое напряжение. Тонус сосудодвигательного центра зависит от нервных импульсов, постоянно идущих к нему от рецепторов различных рефлексогенных зон.

В настоящее время установлено наличие многочисленных рецепторов в эндокарде, миокарде, перикарде. Во время работы сердца создаются условия для возбуждения этих рецепторов. Нервные импульсы, возникшие в рецепторах, поступают к нейронам сосудодвигательного центра и поддерживают их тоническое состояние.

Нервные импульсы идут и от рецепторов рефлексогенных зон сосудистой системы (область дуги аорты, каротидные синусы, коронарные сосуды, рецепторная зона правого предсердия, сосуды малого круга кровообращения, брюшной полости и т. д.), обеспечивая тоническую активность нейронов сосудодвигательного центра.

Возбуждение самых разнообразных экстеро- и интерорецепторов различных органов и тканей также способствует поддержанию тонуса сосудодвигательного центра.

Важную роль в сохранении тонуса сосудодвигательного центра играет возбуждение, поступающее от коры больших полушарий и ретикулярной формации ствола мозга. Наконец, постоянный тонус сосудодвигательного центра обеспечивается воздействием различных гуморальных факторов (углекислый газ, адреналин и др.).

Регуляция активности нейронов сосудодвигательного центра осуществляется за счет нервных импульсов, идущих от коры головного мозга, гипоталамической области, ретикулярной формации ствола мозга, а также афферентных импульсов, поступающих с различных рецепторов. Особенно важная роль в регуляции активности нейронов сосудодвигательного центра принадлежит аортальной и каротидной рефлексогенным зонам.

Рецепторная зона дуги аорты представлена чувствительными нервными окончаниями депрессорного нерва, являющегося веточкой блуждающего нерва. Значение депрессорного нерва в регуляции деятельности сосудодвигательного центра впервые была доказана отечественным физиологом И. Ф. Ционом и немецким ученым Людвигом (1866). В области каротидных синусов располагаются механорецепторы, от которых берет начало нерв, изученный и описанный немецкими исследователями Герингом, Геймансом и другими (1919-1924). Этот нерв получил название синусового нерва, или нерва Геринга. Синусовый нерв имеет анатомические связи с языкоглоточным (IX пара черепных нервов) и симпатическим нервами.

Естественным (адекватным) раздражителем механорецепторов является их растяжение, которое наблюдается при изменении кровяного давления. Механорецепторы чрезвычайно чувствительны к колебаниям давления. Особенно это относится к рецепторам каротидных синусов, которые возбуждаются при изменении давления на 0,13-0,26 кПа (1-2 мм рт. ст.).

Рефлекторная регуляция активности нейронов сосудодвигательного центра, осуществляемая с дуги аорты и каротидных синусов, однотипна, поэтому ее можно рассмотреть на примере одной из рефлексогенных зон (рис. 20).

Рис. 20. Схема рефлекторной регуляции сердечной деятельности. А - схема расположения нервов: 1 - дуга аорты, 2 - общая сонная артерия, 3 - депрессорный нерв, 4 - блуждающий нерв, 5 - узел блуждающего нерва, 6 - синокаротидный нерв, 7 - наружная сонная артерия, 8 - внутренняя сонная артерия. Б - схема рефлекторных дуг: 1 - каротидный синус, 2 - синокаротидный нерв, 3 - дуга аорты, 4 - депрессорный нерв, 5 - продолговатый мозг, 6 - блуждающий нерв, 7 - сердце
Рис. 20. Схема рефлекторной регуляции сердечной деятельности. А - схема расположения нервов: 1 - дуга аорты, 2 - общая сонная артерия, 3 - депрессорный нерв, 4 - блуждающий нерв, 5 - узел блуждающего нерва, 6 - синокаротидный нерв, 7 - наружная сонная артерия, 8 - внутренняя сонная артерия. Б - схема рефлекторных дуг: 1 - каротидный синус, 2 - синокаротидный нерв, 3 - дуга аорты, 4 - депрессорный нерв, 5 - продолговатый мозг, 6 - блуждающий нерв, 7 - сердце

При повышении артериального давления в сосудистой системе возбуждаются механорецепторы области дуги аорты. Нервные импульсы от рецепторов по депрессорному нерву и блуждающим нервам направляются в продолговатый мозг к сосудодвигательному центру. Под влиянием этих импульсов снижается активность нейронов прессорной зоны сосудодвигательного центра, что приводит к увеличению просвета сосудов и снижению артериального давления. Одновременно увеличивается активность ядер блуждающих нервов и уменьшается возбудимость нейронов дыхательного центра. Ослабление силы и уменьшение частоты сердечных сокращений под влиянием блуждающих нервов, глубины и частоты дыхательных движений в результате уменьшения активности нейронов дыхательного центра также способствует снижению артериального давления.

При уменьшении артериального давления наблюдаются противоположные изменения активности нейронов сосудодвигательного центра, ядер блуждающих нервов, нервных клеток дыхательного центра, приводящие к нормализации артериального давления.

В восходящей части аорты в ее наружном слое располагается аортальное тельце, а в области разветвления сонной артерии - каротидное тельце, в которых локализованы рецепторы, чувствительные к изменениям химического состава крови, особенно к сдвигам в количестве углекислого газа и кислорода. Установлено, что при повышении концентрации углекислого газа и понижении содержания кислорода в крови происходит возбуждение этих хеморецепторов, которое обусловливает увеличение активности нейронов прессорной зоны сосудодвигательного центра. Это приводит к уменьшению просвета кровеносных сосудов и повышению артериального давления. Одновременно рефлекторно увеличивается глубина и частота дыхательных движений в результате повышения активности нейронов дыхательного центра.

Рефлекторные изменения давления, возникающие в результате возбуждения рецепторов различных сосудистых областей, получили название собственных рефлексов сердечно-сосудистой системы. К ним, в частности, относятся рассмотренные рефлексы, проявляющиеся при возбуждении рецепторов области дуги аорты и каротидных синусов.

Рефлекторные изменения артериального давления, обусловленные возбуждением рецепторов, не локализованных в сердечно-сосудистой системе, получили название сопряженных рефлексов. Эти рефлексы возникают, например, при возбуждении болевых и температурных рецепторов кожи, проприорецепторов мышц при их сокращении и т. д.

Деятельность сосудодвигательного центра за счет регуляторных механизмов (нервных и гуморальных) приспосабливает тонус сосудов и, следовательно, кровоснабжение органов и тканей к условиям существования организма животных и человека. По современным представлениям, центры, регулирующие деятельность сердца и сосудодвигательный центр, функционально объединены в сердечно-сосудистый центр, который управляет функциями кровообращения.

Депо крови

В условиях относительного покоя в сосудистой системе находится 60-70% крови. Это так называемая циркулирующая кровь. Другая часть крови (30-40%) содержится в специальных кровяных депо. Эта кровь получила название депонированной, или резервной. Таким образом, количество крови в сосудистом русле может быть увеличено за счет поступления ее из кровяных депо.

Различают депо крови трех видов. К первому виду относится селезенка, ко второму - печень и легкие и к третьему - тонкостенные вены, особенно вены брюшной полости, и подсосочковые венозные сплетения кожи. Из всех перечисленных депо крови истинным депо является селезенка. В селезенке вследствие особенностей ее строения действительно содержится часть крови, временно выключенной из общей циркуляции. В сосудах печени, легких, в венах брюшной полости и подсосочковых венозных сплетениях кожи вмещается большое количество крови. При сокращении сосудов указанных органов и сосудистых областей в общую циркуляцию поступает значительное количество крови.

Истинное депо крови. С. П. Боткин одним из первых определил значение селезенки как органа, где происходит депонирование крови. Наблюдая больного с заболеванием крови, С. П. Боткин обратил внимание на то, что при угнетенном состоянии психики у больного значительно увеличивалась в размерах селезенка. Напротив, психическое возбуждение больного сопровождалось существенным уменьшением размеров селезенки. В дальнейшем эти факты подтвердились и при обследовании других больных. Колебания размеров селезенки С. П. Боткин связывал с изменением содержания крови в органе.

Ученик И. М. Сеченова физиолог И. Р. Тарханов в опытах на животных показал, что раздражение электрическим током седалищного нерва или области продолговатого мозга при неповрежденных чревных нервах приводило к сокращению селезенки.

Английский физиолог Баркрофт в опытах на животных с выведенной из брюшной полости и подшитой к коже селезенкой изучал динамику колебаний размеров и объема органа под влиянием ряда факторов. Баркрофт, в частности, обнаружил, что агрессивное состояние собаки, например при виде кошки, вызывало резкое сокращение селезенки.

У взрослого человека в селезенке содержится примерно 0,5 л крови. При возбуждении симпатической нервной системы происходит сокращение селезенки и кровь поступает в кровоток. При возбуждении блуждающих нервов селезенка, напротив, наполняется кровью.

Депо крови второго вида. Легкие и печень в своих сосудах вмещают большое количество крови. У взрослого человека в сосудистой системе печени обнаруживается около 0,6 л крови. Сосудистое русло легких содержит от 0,5 до 1,2 л крови.

Вены печени имеют "шлюзовой" механизм, представленный гладкой мускулатурой, волокна которой окружают начало печеночных вен. "Шлюзовой" механизм, так же как и сосуды печени, иннервируется ветвями симпатических и блуждающих нервов. При возбуждении симпатических нервов, при увеличенном поступлении в кровоток адреналина происходит расслабление печеночных "шлюзов" и сокращение вен, в результате в общий кровоток поступает дополнительное количество крови. При возбуждении блуждающих нервов, при действии продуктов распада белка (пептоны, альбумозы), гистамина "шлюзы" печеночных вен закрываются, тонус вен понижается, просвет их увеличивается и создаются условия для наполнения сосудистой системы печени кровью.

Сосуды легких также иннервируются симпатическими и блуждающими нервами. Однако при возбуждении симпатических нервов сосуды легких расширяются и вмещают в себя большое количество крови. Биологическое значение такого влияния симпатической нервной системы на сосуды легких заключается в следующем. Например, при повышенной физической активности увеличивается потребность организма в кислороде. Расширение сосудов легких и увеличение притока крови к ним в этих условиях способствует лучшему удовлетворению возросших потребностей организма в кислороде и, в частности, скелетных мышц.

Депо крови третьего вида. В подсосочковых венозных сплетениях кожи вмещается до 1 л крови. Значительное количество крови содержится в венах, особенно брюшной полости. Все указанные сосуды иннервируются вегетативной нервной системой и функционируют так же, как сосуды селезенки и печени.

Кровь из депо поступает в общий круг кровообращения при возбуждении симпатической нервной системы (исключение составляют легкие), которое наблюдается при физической активности, эмоциях (гнев, страх), болевых раздражениях, кислородном голодании организма, кровопотерях, лихорадочных состояниях и т. д.

Депо крови наполняются при относительном покое организма, во время сна. В этом случае центральная нервная система оказывает влияние на депо крови через блуждающие нервы.

Перераспределение крови

Общее количество крови в сосудистом русле составляет 5-6 л. Этот объем крови не может обеспечить увеличенные потребности органов в крови в период их активности. Вследствие этого перераспределение крови в сосудистом русле является необходимым условием, обеспечивающим выполнение органами и тканями их функций. Перераспределение крови в сосудистом русле приводит к усилению кровоснабжения одних органов и уменьшению других. Перераспределение крови происходит в основном между сосудами мышечной системы и внутренних органов, особенно органов брюшной полости и кожи.

Во время физической работы в скелетных мышцах функционирует больше открытых капилляров и значительно расширяются артериолы, что сопровождается увеличенным притоком крови. Возросшее количество крови в сосудах скелетных мышц обеспечивает их эффективную работу. Одновременно уменьшается кровоснабжение органов системы пищеварения.

Во время процесса пищеварения расширяются сосуды органов системы пищеварения, кровоснабжение их увеличивается, что создает оптимальные условия для осуществления физической и химической обработки содержимого желудочно-кишечного тракта. В этот период суживаются сосуды скелетных мышц и уменьшается их кровоснабжение.

Расширение сосудов кожи и увеличение притока крови к ним при высокой температуре окружающей среды сопровождается уменьшением кровоснабжения других органов, преимущественно системы пищеварения.

Перераспределение крови в сосудистом русле происходит и под действием силы тяжести, например сила тяжести облегчает движение крови по сосудам шеи. Ускорение, возникающее в современных летательных аппаратах (самолеты, космические корабли при взлете и т. д.), также вызывает перераспределение крови в различных сосудистых областях организма человека.

Расширение сосудов в работающих органах и тканях и сужение их в органах, находящихся в состоянии относительного физиологического покоя, является результатом воздействия на тонус сосудов нервных импульсов, идущих от сосудодвигательного центра.

предыдущая главасодержаниеследующая глава

















© ANFIZ.RU, 2011-2022
При использовании материалов сайта активная ссылка обязательна:
http://anfiz.ru/ 'Анатомия и физиология человека'


Поможем с курсовой, контрольной, дипломной
1500+ квалифицированных специалистов готовы вам помочь