НОВОСТИ   БИБЛИОТЕКА   ЭКЗАМЕН ПО АНАТОМИИ   ЭКЗАМЕН ПО ПАТОЛОГИИ   О САЙТЕ  






предыдущая главасодержаниеследующая глава

5. Эритроциты

Форма и количество эритроцитов

У человека и многих млекопитающих животных красные кровяные клетки, или эритроциты, представляют собой безъядерные клетки двояковогнутой формы (цвет. табл. II). Они эластичны, что помогает им проходить по узким капиллярам. Диаметр эритроцита человека 7-8 мкм, а толщина - 2-2,5 мкм. Отсутствие ядра и форма двояковогнутой линзы (поверхность двояковогнутой линзы в 1,6 раза больше поверхности шара) увеличивают поверхность эритроцитов, а также обеспечивают быструю и равномерную диффузию кислорода внутрь эритроцита.

Общая поверхность всех эритроцитов человека более 3000 м2, что в 1500 раз превышает поверхность его тела.

Общее количество эритроцитов, находящихся в крови человека, огромно. Оно примерно в 10 000 раз больше населения нашей планеты. Если выстроить все эритроциты человека в один ряд, то получилась бы цепочка длиной около 180 000 км; если же положить эритроциты один на другой, то образовалась бы колонна высотой, превосходящей длину экватора земного шара (50 000- 60 000 км).

В 1 мм3 крови содержится от 4 000 000 до 5 000 000 эритроцитов (у женщин 4 000 000-4 500 000, у мужчин 4 500 000 - 5 000 000).

Количество эритроцитов не строго постоянно. Оно может значительно увеличиваться при недостатке кислорода на больших высотах, при мышечной работе. У людей, живущих в высокогорных районах, эритроцитов примерно на 30% больше, чем у жителей морского побережья. Не случайно, в первые дни пребывания в горной местности человек испытывает слабость, головокружение, снижается его работоспособность. Эти явления связаны с недостаточным поступлением в организм кислорода в условиях разреженного воздуха. Однако через некоторое время состояние человека значительно улучшается, так как в организме увеличивается количество эритроцитов, а следовательно, улучшается обеспечение его кислородом. При переезде из низменных районов в высокогорные количество эритроцитов в крови увеличивается. Когда же потребность в кислороде уменьшается, количество эритроцитов в крови снижается.

Содержание эритроцитов в крови меняется с возрастом (табл. 2).

Подсчет эритроцитов

Подсчет эритроцитов производится при помощи специальных счетных камер.

Для подсчета форменных элементов взятую из пальца кровь разбавляют в специальных смесителях, чтобы создать нужную концентрацию клеток, удобную для счета. Для разбавления крови при подсчете эритроцитов применяют гипертонический (3-про-центный) раствор NaCl, в котором эритроциты сморщиваются.

Таблица 2. Возрастные изменения количества эритроцитов
Таблица 2. Возрастные изменения количества эритроцитов

Смеситель (меланжер) состоит из градуированной капиллярной трубочки с яйцевидным расширением (ампулой). В ампулу помещена стеклянная бусинка для лучшего размешивания крови (рис. 5). Имеются смесители для подсчета красных и белых кровяных телец. В смесителях для эритроцитов бусинка внутри ампулы окрашена в красный цвет, а для лейкоцитов - в белый. На капилляре смесителей имеются метки 0,5 и 1,0; они обозначают половину или целый объем капилляра. Выше яйцевидного расширения метка 101 в смесителе для эритроцитов означает, что полость расширения (ампулы) имеет объем в 100 раз больший, чем объем полости капилляра. На смесителе для лейкоцитов имеется метка И, свидетельствующая о том, что полость ампулы в 10 раз больше полного объема капилляра. Когда в смеситель для эритроцитов набирают кровь до метки 1,0, а затем разбавляют ее 3-процентным раствором NaCl, доводя общий объем до метки 101, кровь будет разведена в 100 раз. При разведении в 200 раз следует набрать кровь в капилляр смесителя до метки 0,5 и добавить разбавляющей жидкости до метки 101.

Рис. 5. Смеситель для разведения крови: 1 - капиллярная трубочка; 2 - ампула; 3 - стеклянная бусинка для перемешивания крови; 4 - стеклянная трубка
Рис. 5. Смеситель для разведения крови: 1 - капиллярная трубочка; 2 - ампула; 3 - стеклянная бусинка для перемешивания крови; 4 - стеклянная трубка

Перед употреблением смеситель должен быть тщательно вымыт, высушен продуванием воздуха с помощью водоструйного насоса или резиновой груши. Достаточно ли просушен смеситель, определяют по передвижению бусинки в ампуле: прилипание бусинки к стенкам свидетельствует о наличии влаги.

Счетная камера представляет собой толстое предметное стекло, на верхней поверхности которого имеются три поперечные площадки, разделенные между собой углублениями (рис. 6). Средняя площадка ниже крайних на 0,1 мм, и при наложении на боковые площадки покровного стекла над сеткой средней площадки образуется камера глубиной 0,1 мм. Камера Горяева имеет на средней площадке поперечный желобок. По обе стороны от этого желобка находится квадратная сетка, нарезанная специальной делительной машиной. Сетка может иметь разный рисунок в зависимости от конструкции камеры. В сетке камеры Горяева имеется 225 больших квадратов, 25 из которых разделены на 16 маленьких квадратиков каждый. Размеры маленьких квадратиков в камере любой конструкции одинаковы. Сторона малого квадрата равна 1⁄20 мм, следовательно, его площадь 1⁄20 × 1⁄20 = 1⁄400 (мм2). Если учесть, что высота камеры (расстояние от поверхности средней площадки до покровного стекла) равна 1⁄10 мм, то объем крови над малым квадратом равен: 1⁄400×1⁄10 = 1⁄4000 (мм3).

Опыт 6

Налейте в чашечку раствор для разбавления крови (3-процентный раствор NaCl). Проколите иглой кожу пальца, первую выступившую из пальца каплю крови сотрите ватным тампоном и, когда на пальце появится капля крови достаточной величины, погрузите в нее кончик смесителя. Наконечник смесителя (4 на рис. 5) возьмите в рот и насосите кровь до метки 0,5, Надо следить, чтобы в капилляр не попали пузырьки воздуха. Для этого кончик капилляра должен быть погружен в каплю крови до конца насасывания. Нельзя прижимать смеситель к пальцу, чтобы не закупорить отверстие смесителя. Нужно стараться, чтобы кровь не поднималась выше указанной метки на смесителе, но если это случилось, то можно осторожно опустить кончик капилляра на вату или фильтровальную бумагу, и уровень крови опустится. Разумеется, ошибка при подсчете увеличится. Затем быстро погрузите кончик капилляра в разбавляющую жидкость (3-процентный раствор NaCl). He выпуская кровь из смесителя, насосите в него ртом разбавляющий раствор до метки 101. Кровь теперь будет разведена в 200 раз. Закончив набор жидкости, переведите смеситель в горизонтальное положение, снимите резиновую трубку, закройте капилляр с обоих концов большим и указательным пальцами и тщательно перемешайте жидкости в расширении смесителя. Теперь смеситель в горизонтальном положении опустите на стол.

Рис. 6. Счетная камера Горяева: 1 - вид сверху; 2 - вид сбоку; 3 - сетка Горяева; 4 - смеситель
Рис. 6. Счетная камера Горяева: 1 - вид сверху; 2 - вид сбоку; 3 - сетка Горяева; 4 - смеситель

Плотно притрите покровное стекло к крайним площадкам счетной камеры так, чтобы при опрокидывании камеры стекло не падало. Из смесителя выпустите 2-3 капли жидкости на вату или фильтровальную бумагу, а следующую каплю с кончика капилляра выпустите под покровное стекло в счетную камеру. Смесь жидкостей в силу капиллярности должна ее равномерно заполнить, а положение покровного стекла не должно измениться. Если стекло "всплывает", то камеру тщательно протрите и процедуру заполнения повторите. Заполненную камеру поместите под микроскоп.

При малом увеличении подсчитайте число эритроцитов в 80 маленьких квадратиках, что соответствует 5 большим часто разграфленным квадратам. 5 больших квадратов выбирайте по диагонали через всю счетную камеру. Это делается для того, чтобы уменьшить ошибку, связанную с неравномерностью заполнения камеры.

Чтобы облегчить подсчет эритроцитов, на листе бумаги нарисуйте 5 больших квадратов, каждый из них разделите на 16 маленьких квадратиков. Подсчитав под микроскопом число эритроцитов в каждом маленьком квадратике, впишите эту величину в квадратики на бумаге.

Для того чтобы не ошибиться в подсчете и дважды не подсчитать эритроциты, лежащие на границах между малыми квадратиками, пользуйтесь таким правилом: относящимися к данному квадрату считаются эритроциты, лежащие как внутри квадрата, так и на его левой и верхней границе. Эритроциты, лежащие на правой и нижней границе квадрата, не считаются.

Исходным для дальнейших расчетов принимают объем жидкости над одним малым квадратиком. Поскольку он равен 1⁄4000 мм3, то количество эритроцитов в 1 мм3 крови можно подсчитать, умножив среднее количество эритроцитов в малом квадратике на 4000 и на величину разведения крови.


где Э - число эритроцитов в 1 мм3 крови;

n - число эритроцитов, подсчитанное в 80 малых квадратиках;

200 - разведение крови.

Закончив подсчет эритроцитов, вымойте счетную камеру и вытрите ее насухо чистой марлей.

Значение эритроцитов в поддержании постоянства внутренней среды

Основная функция эритроцитов заключается в переносе кислорода от легких ко всем клеткам тела. Находящийся в эритроцитах гемоглобин легко соединяется с кислородом и легко отдает его в определенных условиях.

Велика роль эритроцитов и в удалении углекислого газа из тканей. При участии эритроцитов углекислый газ, образующийся в процессе жизнедеятельности клеток, превращается в углекислые соли, которые постоянно циркулируют в крови. В капиллярах легких эти соли, опять же при обязательном участии эритроцитов, распадаются с образованием углекислого газа и воды. Углекислый газ и часть воды тут же удаляются из организма через дыхательные пути.

Эритроциты поддерживают относительное постоянство газового состава крови. При нарушении их функции во внутренней среде организма резко повышается содержание углекислого газа и развивается кислородная недостаточность, что губительно сказывается на деятельности всего организма.

Гемоглобин

В составе эритроцитов содержится белковое вещество гемоглобин, придающее крови красный цвет. Гемоглобин состоит из белковой части - глобина - и небелкового вещества - гема, содержащего двухвалентное железо. В капиллярах легких гемоглобин соединяется с кислородом, образуя оксигемоглобин.

В капиллярах тканей оксигемоглобин легко распадается с освобождением кислорода и гемоглобина. Этому способствует высокое содержание в тканях углекислого газа.

Оксигемоглобин имеет ярко-красный цвет, а гемоглобин - темно-красный. Этим объясняется различие в окраске венозной и артериальной крови.

Оксигемоглобин обладает свойствами слабой кислоты, что имеет важное значение в поддержании постоянства реакции крови (рН).

Гемоглобин способен образовывать соединение и с углекислым газом. Этот процесс происходит в капиллярах тканей. В капиллярах легких, где содержание углекислого газа значительно меньше, чем в капиллярах тканей, соединение гемоглобина с углекислым газом распадается. Таким образом, гемоглобин переносит не только кислород от легких к тканям. Он участвует и в переносе углекислого газа.

Наиболее прочно гемоглобин соединяется с угарным газом (СО). При содержании в воздухе 0,1% угарного газа больше половины гемоглобина крови связывается с окисью углерода, в связи с чем клетки и ткани не обеспечиваются необходимым количеством кислорода. В результате кислородного голодания появляются мышечная слабость, судороги, происходит потеря сознания и может наступить смерть.

Первая помощь при отравлении угарным газом - обеспечить приток чистого воздуха, напоить пострадавшего крепким чаем, а дальше необходимо медицинское вмешательство.

В 100 мл крови человека содержится в среднем около 16 г гемоглобина.

Определение количества гемоглобина производится колориметрическим способом, основанным на следующем принципе: если исследуемый раствор путем разбавления довести до окраски, одинаковой со стандартным раствором, то концентрация растворенных веществ в обоих растворах будет одинакова, а количества веществ будут соотноситься как их объемы. Зная количество вещества в стандартном растворе, можно вычислить его содержание в исследуемом растворе. Прибор для определения количества гемоглобина в крови называют гемометром.

Гемометр (рис. 7) представляет собой штатив, задняя стенка которого сделана из стекла молочного цвета. В штатив вставлены три пробирки одинакового диаметра. Две крайние пробирки сверху запаяны и содержат стандартный раствор солянокислого гематина (соединение гемоглобина с соляной кислотой). Средняя пробирка градуирована и открыта сверху. Она предназначена для исследуемой крови. К прибору приложены пипетка на 20 мм3 и тонкая стеклянная палочка. Раствор, взятый для стандарта, содержит в 100 мл 16,7 г гемоглобина. Такое содержание гемоглобина считается высшим пределом нормы и принимается за 100%. Для проведения исследования гемоглобин испытуемой крови нужно перевести в солянокислый гематин. Это вещество коричневого цвета, а стандартный раствор его имеет окраску крепкого чая.

Рис. 7. Гемометр
Рис. 7. Гемометр

Опыт 7

В среднюю пробирку гемометра налейте 0,1-нормального раствора соляной кислоты до метки 10. В специальную пипетку, прилагаемую к гемометру, наберите 20 мм3 крови; обтерев кончик пипетки ваткой (уровень крови в ней при этом не должен меняться), осторожно выдуйте кровь на дно пробирки с соляной кислотой. Не вынимая из пробирки пипетку, несколько раз сполосните ее соляной кислотой. Наконец, прикоснитесь пипеткой к стенке пробирки и тщательно выдуйте ее содержимое. Раствор оставьте на 5-10 мин, перемешивая его стеклянной палочкой. Это время необходимо для полного превращения гемоглобина в солянокислый гематин.

Затем в среднюю пробирку по каплям приливайте пипеткой дистиллированную воду до тех пор, пока цвет полученного раствора не будет одинаковым с цветом стандарта (добавляя воду, раствор перемешивайте палочкой). Особенно осторожно добавляйте последние капли.

Цифра, стоящая на уровне поверхности раствора в средней пробирке, покажет содержание гемоглобина в исследуемой крови в процентах по отношению к норме, условно принятой за 100 %.

Реакция оседания эритроцитов (РОЭ)

Если кровь предохранить от свертывания и оставить на несколько часов в капиллярных трубочках, то эритроциты, находящиеся в крови, в силу тяжести начинают оседать. Они оседают с определенной скоростью. У женщин нормальная скорость оседания эритроцитов 7-12 мм в 1ч, а у мужчин - 3- 9 мм в 1 ч.

Рис. 8. Прибор Панченкова
Рис. 8. Прибор Панченкова

Определение скорости оседания эритроцитов имеет важное диагностическое значение в медицине. При туберкулезе, различных воспалительных процессах в организме скорость оседания эритроцитов повышается.

Реакцию оседания эритроцитов (РОЭ) определяют с помощью прибора Панченкова (рис. 8).

Прибор представляет собой штатив, в котором укреплены в вертикальном положении капиллярные трубочки. На капиллярах нанесены деления в миллиметрах. Кроме того, на каждом капилляре имеются еще три метки: метка К (кровь), метка Р (реактив) и метка О, которая стоит на одном уровне с меткой К.

предыдущая главасодержаниеследующая глава

















© Злыгостев Алексей Сергеевич, 2011-2019
При использовании материалов сайта активная ссылка обязательна:
http://anfiz.ru/ 'AnFiz.ru: Анатомия и физиология человека'